
Science
Education

Diagnostic Opportunities Using
Rasch Measurement in the Context of
a Misconceptions-Based Physical
Science Assessment

STEFANIE A. WIND,1 JESSICA D. GALE2

1The University of Alabama, Tuscaloosa, AL 35487; 2Center for Education Integrating
Science Mathematics and Computing, Georgia Institute of Technology, Atlanta, GA
30308, USA

Received 21 August 2014; accepted 25 February 2015
DOI 10.1002/sce.21172
Published online 11 May 2015 in Wiley Online Library (wileyonlinelibrary.com).

ABSTRACT: Multiple-choice (MC) items that are constructed such that distractors tar-
get known misconceptions for a particular domain provide useful diagnostic information
about student misconceptions (Herrmann-Abell & DeBoer, 2011, 2014; Sadler, 1998). Item
response theory models can be used to examine misconceptions distractor-driven multiple-
choice (MDDMC) items as a method for examining patterns of student answer choices
given their achievement level. Furthermore, changes in response patterns over time can
yield useful information about changes in student understanding following instruction. Be-
cause it meets the requirements for invariant measurement, the Rasch model is a promising
tool for examining the diagnostic properties of MDDMC items within a coherent measure-
ment framework; however, this application of the dichotomous Rasch model in conjunction
with MDDMC items is relatively unexplored (Herrmann-Abell, 2011, 2014). The purpose
of this study is to explore the diagnostic information about student understanding of phys-
ical science concepts provided by a Rasch-based analysis of MDDMC items. This study
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examines the relationship between misconceptions and a measure of student achievement
as a method for targeting curriculum development and professional development within the
framework of design-based implementation research (Penuel & Fishman, 2012). Implica-
tions for research, theory, and practice are discussed. C© 2015 Wiley Periodicals, Inc. Sci Ed

99:721–741, 2015

INTRODUCTION

An extensive literature in the learning sciences argues that misconceptions (also known
as preconceptions or alternative, naı̈ve, or intuitive understandings) play an important
role in the science learning process (National Research Council [NRC], 2007). Science
students are not blank slates; rather, they bring to their science learning experiences an
array of beliefs and knowledge based on their previous education and experience of the
physical world. Although research on early conceptual development demonstrates that the
understanding of basic physical properties and phenomena emerges in infancy (Baillargeon,
2004; Spelke, Katz, Purcell, Ehrlich, & Breinlinger, 1992), by the time students enter school
they are likely to have developed conceptions of the physical world that are inconsistent
with formal scientific understanding (Caramazza, McCloskey, & Green, 1981; Ioannides
& Vosniadou, 2002). For example, although even very young children have an intuitive
understanding of force, this understanding is different from the concept of force embodied
by Newtonian mechanics. Furthermore, misconceptions of scientific phenomena are robust
and tend to be highly resistant to change through instruction (Chi, 2005)—so much so that
they often persist into adulthood in spite of formal science education (Kikas, 2004). Thus,
science education researchers suggest the identification of student misconceptions and the
assessment of students’ evolving conceptual understanding as key objectives for science
educators.

One method for exploring student misconceptions is through the use of assessment
items designed to reveal known misconceptions in a domain. Specifically, misconceptions
distractor-driven multiple-choice (MDDMC) items can be constructed such that distractors
target known misconceptions for a particular domain that have been identified through
empirical research. As a result, both correct and incorrect responses provide diagnostic
information about student understanding (Herrmann-Abell & DeBoer, 2011, 2014; Sadler,
1998). Although multiple-choice (MC) items are often criticized as an insufficient mea-
sure of higher order thinking skills (Klassen, 2006) and susceptible to test-wiseness and
guessing (Lee & Winke, 2012; Rogers & Bateson, 1991; Roznowski & Bassett, 1992),
examination of student responses to MDDMC items has been shown to provide insight
into student understanding. As pointed out by Sadler (1998), carefully constructed dis-
tractors can be seen as “windows into childrens’ ideas” and “markers of progress” that
reveal information about student understanding which may be useful for targeting instruc-
tion/curriculum. He observed that assessments constructed with MDDMC items “combine
the richness of qualitative research with the power of quantitative assessment, measuring
conceptual change along a single uniform dimension” (Sadler, 1998, p. 265). Further-
more, student responses can be examined over time to identify changes in patterns of
misconceptions.

Although previous research on the development of MC items has emphasized the im-
portance of constructing distractors that are “plausible and discriminating,” (Haladyna,
1999; Haladyna & Rodriguez, 2013, p. 91), the use of items whose distractors are designed
to reflect distinct misconceptions based on empirical evidence of conceptual develop-
ment is less common. In other words, there is a difference in the diagnostic information
that is provided by MC items whose distractors have been purposefully developed to be
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plausible by item writers or curriculum developers, and MC items whose distractors draw
upon evidence of conceptual development based on domain-specific empirical research.
In this study, we examined student responses to a set of MDDMC items before and after
a course of instruction to explore changes in their understanding of specific concepts in
physical science.

MODELING STUDENT RESPONSES TO MDDMC ITEMS

A variety of methods can be used to examine student responses to MC items whose
distractors have been developed to provide diagnostic information, such as MDDMC items.
For example, a variety of item analysis techniques based on descriptive and inferential
statistics that are often associated with classical test theory (CTT) have been used to
explore patterns of responses to MC items. As pointed out by Haladyna and Rodriguez
(2013), CTT techniques for examining MC item distractors have not changed much since
their introduction around the 1950s (Guilford, 1954; Lord, 1952) and are limited when low
frequencies are observed for one or two answer choices—a common occurrence in MC
item assessments.

An alternative to CTT methods for examining patterns of responses to MDDMC items is
the use of models based on item response theory (IRT). IRT models are used to predict and
explain student responses to individual items in terms of a latent variable. Whereas CTT
techniques are based on the total score scale, which is not linear, IRT models are used to
calculate estimates of student achievement and item difficulty on a linear (interval-level)
scale. In the context of MDDMC items, IRT models can be used to examine the functional
relationship between student responses and model-based estimates of achievement on a
latent variable.

Examination of previous research indicates that a variety of IRT methods are available
for gathering diagnostic information about student conceptions based on their answers to
MC items. One approach involves treating the distractors as a “hierarchy of correctness”
and analyzing student responses using a partial-credit model (Andrich & Styles, 2009; Asril
& Marais, 2011; Smith, 1987). This method is appropriate when the misconceptions that
serve as distractors contain aspects of the correct answer, such that they can be scored using
a rating scale. Wilson (1992) proposed a related method that makes use of the ordered
partition model (OPM). The OPM is particularly useful when used within a construct-
modeling framework (Wilson, 2005), because the model incorporates a scoring scheme
that relates each answer choice to a specific location on the construct map that represents
a progression along a latent variable, with the correct answer receiving the highest score
(Wilson, 2008). Because the OPM requires that score values be assigned to each answer
choice, this approach is similar to a partial-credit treatment of MC item answer choices.
The distinguishing feature of the OPM is that multiple answer choices can share the same
score value. Similarly, Wang (1998) proposed a Rasch-type distractor model that estimates
separate difficulty parameters for each distractor in MC items. The major benefit of the
distractor model is its ability to examine model-data fit issues associated with distractors
to inform item revision.

IRT methods have also been proposed that are appropriate for MDDMC items whose
answer choices cannot be ordered in terms of “correctness” or progression along a latent
variable. One approach within this category was illustrated by Herrmann-Abell and DeBoer
(2011, 2014) based on Rasch measurement theory. The major benefit of Rasch measurement
theory is that it is based on the principles of invariant measurement. In other words, Rasch
models facilitate the interpretation of student achievement and item difficulty within a
single frame of reference, such that inferences about student achievement do not depend
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Figure 1. Invariant measurement illustration.
Note that the student has the same achievement level on all three tests.

on item characteristics and inferences about items do not depend on student characteristics
(Wright & Masters, 1982).

Figure 1 illustrates the importance of separating items and persons to interpret results
from an achievement test. Three separate tests and one student are used for the illustration,
with each test illustrated separately using a horizontal line. The horizontal line represents
the latent variable, or construct, that is being measured by the test, with locations farther to
the right indicating higher achievement and higher item difficulty, and locations farther to
the left indicating lower achievement and easier items. The person’s location is the same
on each test.

Test A is a difficult test for the example student, where the difficulty of the items exceeds
the student’s level of achievement, and the expected score is zero. Test B is an easy test for
the example student, where the student’s achievement exceeds the difficulty of all of the
items, such that the expected score is eight. Test C includes one item that can be correctly
answered by the student, and seven that are too difficult, so the expected score is one. This
example illustrates three different expected scores for a single student that suggest three
different achievement levels, depending on the characteristics of the items. As pointed out
by Wright and Masters (1982):

If the meaning of a test score depends on the characteristics of the items . . . we must
“adjust” their score for the effects of the particular test items from which that particular
score comes. This adjustment must be able to turn test-bound scores into measures of
person ability which are test-free. (p. 6)

When data fit the Rasch model, these challenges related to sample dependency for the
interpretation of student achievement and item difficulty are avoided. Specifically, estimates
of student achievement are separated from the specific sample of items, and estimates of item
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difficulty are separated from the specific sample of students. Furthermore, the estimates
of student achievement and item difficulty are placed on a single linear (interval-level)
scale, such that the same “ruler” is being used to make comparisons among students and
items, regardless of which students or items are considered in the comparison. To consider
the quality of a particular measurement, the Rasch model provides estimates of the error
associated with each item calibration and person measure, along with indicators of model-
data fit for each item and person. The Rasch model can also be used to examine “traditional”
indicators of measurement quality, including reliability, for persons and items.

The ability to turn “test-bound scores into measures” is a major motivation for the
adoption of Rasch modeling by many national and international assessments including
the National Assessment of Educational Progress (NAEP) and Program for International
Student Assessment (PISA) as well as the American Association for the Advancement of
Science (AAAS) item bank, which was the major source for the assessment items used
in this study. Furthermore, models based on Rasch measurement theory are frequently
used to measure cognitive and affective constructs in the context of science education
(Liu & Boone, 2006). For example, the dichotomous Rasch model has been applied to
MC science assessments (e.g., Boone & Scantlebury, 2006). Rasch models for rating
scale data (Andrich, 1978; Masters, 1982) have been used to measure affective variables
related to science (Sondergeld & Johnson, 2014) including constructs such as socioscientific
decision-making strategies (Eggert & Bogeholz, 2009) and self-efficacy (Boone, Townsend,
& Starver, 2010).

Hermann-Abell and DeBoer applied the dichotomous Rasch model (Rasch, 1960/1980)
to estimate student and item locations on a single linear continuum that represents a con-
struct, or latent variable. For each item of interest, they used graphical displays to illustrate
the proportion of students selecting each answer choice along the range of student achieve-
ment estimates. The resulting displays provide diagnostic information that describes the
relationship between student achievement levels and the popularity of misconceptions that
are included in MDDMC items. This approach goes beyond what would be obtained using
proportions of students selecting each distractor at the pre- and posttest time points because
it provides information about the degree to which each answer choice (misconception) is
attractive to students at different levels of achievement. Furthermore, the use of the Rasch
model is desirable in that estimates of student achievement can be described separately
from item difficulty estimates, and that these estimates are on an interval-level scale.
The current study applies and extends the Rasch-based distractor analysis methodology
illustrated by Herrmann-Abell and DeBoer (2011, 2014) using MDDMC items that address
physical science concepts for eighth-grade students using a pre- and posttest design.

PURPOSE

The purpose of this study is to explore diagnostic information about student understand-
ing of physical science concepts provided by a Rasch-based analysis of MDDMC items.
Furthermore, the study demonstrates the use of the Rasch-based MDDMC methodology
as a tool for examining changes in student misconceptions following instruction via an
experimental physical science curriculum.

Two research questions guided this study:

1. What does a Rasch analysis of MDDMC items reveal about student understanding
and misconceptions of physical science concepts?

2. How can a Rasch analysis of MDDMC items be used to examine changes in student
misconceptions of physical science concepts over time?
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PROCEDURES

This study uses data from an assessment of physical science concepts that was designed
as part of a larger design-based implementation research (DBIR) program (Penuel &
Fishman, 2012; Penuel, Fishman, Cheng, & Sabelli, 2011). In contrast to efficacy research
focused primarily on measuring treatment effects of an intervention, DBIR is an iterative
approach that typically focuses on investigating and improving the implementation of
educational interventions. As such, DBIR researchers often use analyses to iteratively
refine interventions and to gain a deeper understanding of the conditions under which
particular innovations can be expected to be effective (Harris, Phillips, & Penuel, 2011;
Penuel & Fishman, 2012). Thus, a major goal for these assessments was to use the results to
inform ongoing curriculum development, teacher professional development, and research
on curriculum implementation.

The following section describes the procedures used to address the two guiding research
questions.

Instrument

To examine student misconceptions before and after a unit of instruction via the experi-
mental science curriculum, pre- and postassessments were developed using MDDMC items.
The preassessment was administered before the beginning of the unit, and the postassess-
ment was administered within 1 week of the end of the unit. The assessments shared 16
common MDDMC items, which were aligned to physical science domains that correspond
to the learning goals of the science curriculum. The MDDMC items included in the physical
science assessment were drawn from several sources, including original items from subject
matter experts involved in the development of the science curriculum, released items from
the National Assessment of Educational Progress Questions Tool (NAEP; U.S. Department
of Education, Institute of Education Sciences, National Center for Education Statistics,
2015), and items from the AAAS Item Bank developed by Project 2061.

Although each of the items was constructed using the MDDMC format, this study focused
on items from the AAAS Project 2061 item bank. Items in the AAAS Project 2061 item
bank were emphasized because of the empirical basis for answer choices that reflect student
misconceptions (DeBoer et al., 2008). The AAAS Project 2061 items have been developed
as part of a multiyear National Science Foundation–funded grant aimed at developing
MDDMC items aligned with the science content standards described in Benchmarks for
Science Literacy (AAAS, 1993) and the National Science Education Standards (NRC,
1996). Additional information about the development of the AAAS item bank is available
in Herrmann-Abell and DeBoer (2011).

Participants

Participants included a sample of 403 eighth-grade students enrolled in three public
middle schools where the science curriculum is currently implemented. One of these three
schools is located in a rural community, and two schools are located in suburban communi-
ties outside a major city in the southeastern United States. Participating schools vary with
respect to student ethnicity, socioeconomic status, and students’ prior science achievement;
however, the demographics of participating students were generally representative of each
school community. Demographic information for each school is presented in Table 1. The
sample included all students for whom parental consent and student assent forms were
obtained, which represented 86% of students in participating classrooms.
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TABLE 1
Demographic Data for Participating Schools

Characteristic School 1 (N = 164) School 2 (N = 217) School 3 (N = 89)

School setting Rural Suburban Suburban
Free/reduced lunch (%) 80 65 16
Underrepresented

minorities in
STEM (%)

52 67 25

Average class size 25 31 18

Data Analysis

Data analyses for this study consisted of two major steps. In Step 1, the dichotomous
Rasch model was used to explore the psychometric properties of the physical science assess-
ment, including estimates of student and item locations on the physical science construct
and indices of model-data fit. In Step 2, independent analyses of the pre- and postad-
ministrations of the physical science assessment were used to create graphical displays
that illustrate student response patterns for both administrations of the assessment. Data
analyses were conducted using the Winsteps computer program (Linacre, 2014).

Step 1: Dichotomous Rasch Model

The first step in the data analysis was the application of the dichotomous Rasch model
to estimate student achievement and item difficulty on the pre- and postassessments. When
the Rasch model is applied, person and item raw scores undergo a nonlinear transformation
that creates a scale onto which persons and items can be mapped that is more likely to
have equal units than the original total-score scale. The raw-score transformation is used
to estimate person logits (Bn) that represent person achievement, and item logits (Di) that
represent item difficulty, in terms of the latent variable. The Rasch model can be stated in
log-odds form as follows:

Ln [Pni = 1/Pni = 0] = Bn − Di (1)

where Bn is the location of student n on the construct (i.e., student ability), Di is the location
of item i on the construct (i.e., item difficulty), and Ln[Pni = 1/Pni = 0] is the log of the
odds for a correct response (X = 1) rather than an incorrect response (X = 0) by student
n on item i.

When data fit the Rasch model, invariant measurement is achieved: person ability (Bn)
may be estimated without the influence of the effects of item difficulties (Di), and item
difficulty (Di) may be estimated without the effects of person abilities (Bn).

In this study, the Rasch model is applied independently to data from the pre- and
postassessments. The results from analyses using the Rasch model include estimates of
individual student and item locations on the logit scale. Because the estimates for students
and items are on the same scale, a visual display called a variable map can be constructed
that presents a graphical illustration of the logit-scale locations for students and items.
Other Rasch literature has used the terms Wright map or item-person map in reference to
the variable map (Wilson, 2011). In the context of this study, the variable map represents an
operational definition of the physical science construct. In addition to logit-scale locations
for persons and items, additional statistics can be calculated based on the Rasch model
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results that are used to verify the appropriateness of the variable map as a representation of
the physical science construct. Additional Rasch-based statistics that are examined in this
study include separation statistics and indices of model-data fit for students and items.

Separation Statistics. Separation statistics are used to describe the degree to which
differences among individuals, and items are realized in a measurement procedure. The
reliability of separation statistic based on Rasch models indicates how well individual
elements, such as students or items, can be differentiated from one another. The reliability
of separation statistic for students is comparable to Cronbach’s alpha coefficient because it
reflects an estimate of true score to observed-score variance. However, Cronbach’s alpha
and the Rasch reliability of separation for student statistics are slightly different because
alpha is based only on the assumption of linear measures and the Rasch-based reliability
of separation statistic is based on a linear, interval-level scale when good model-data fit is
observed. For items, the reliability of separation statistic describes the spread, or differences,
in the difficulty of the MDDMC items. In addition to the reliability of separation statistic,
a chi-square statistic (χ2) can be calculated to determine whether the differences among
logit-scale locations for students and items are statistically significant.

Model-Data Fit Statistics. In the context of the assessments examined in this study,
model-data fit statistics can be used to identify individual students or items that do not match
the expectations of the Rasch model. This study uses two fit statistics that are calculated
in the Winsteps computer program (Linacre, 2014): standardized outfit mean square error
(MSE) and standardized infit MSE statistics. Because it is unweighted, the outfit statistic is
useful because it is particularly sensitive to “outliers,” or extreme unexpected observations.
Infit MSE statistics are weighted by statistical information for a particular facet; as a result
they are not as sensitive to extreme outliers. Both unstandardized and standardized versions
of these statistics are calculated in the Winsteps computer program. However, because the
sampling distribution for the unstandardized MSE statistics is not known, researchers are
encouraged (e.g., Smith, 2000; Smith, Schumacker, & Bush, 2000) to use the standardized
versions of these statistics when considering fit to the Rasch model. As a result, this study
reports the standardized versions of the statistics.

Correspondence Between Pre- and Postmeasures. Although it is possible to esti-
mate item difficulty and student achievement in a single Rasch analysis (cf. Monsaas &
Engelhard, 1991; Wright, 2003), independent calibrations of the results are better suited to
the purpose of this study. Following Smith (1997), separate analyses were conducted for
the pre- and postassessment time points as a method for discerning changes in patterns of
misconceptions between the two administrations—evidenced through changes in response
patterns. As a result, Equation (1) was applied independently to each administration, and a
comparison of results from pre- and postassessment distractor analyses (described below)
was used to consider changes in student misconceptions following instruction.

Step 2: Distractor Analysis

The second step in the data analysis for this study was a distractor analysis based on
the results from Step 1. This distractor analysis technique for MDDMC items was adapted
from the method illustrated by Herrmann-Abell and DeBoer (2011) in the context of a high
school chemistry assessment and by Herrmann-Abell and DeBoer (2014) in the context
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of K–12 assessments of energy concepts. For each item, the distractor analysis involves
the use of graphical displays that illustrate the relationship between estimates of student
achievement (B in Equation (1)) and the proportion of students selecting a particular answer
choice (A, B, C, or D) at each time point (pre- and postassessment). Specifically, distractor
analysis plots are created by plotting estimates of student achievement (low to high) based
on the Rasch model along the x-axis, and the proportion of students selecting each answer
choice along the y-axis. Additional details about the interpretation of distractor analysis
plots are provided in the Results section.

These distractor analysis plots can be seen as diagnostic tools that summarize patterns
of student misconceptions, changes in student conceptions over time, and the overall
functioning of an item. The major source for items in this study was the AAAS item
bank, whose items were developed to reflect relevant physical science misconceptions.
As a result, these plots provide a visual display that illustrates the popularity ordering of
misconceptions associated with each MDDMC item that was observed among students with
varying levels of achievement. Along the same lines, examination of the plots associated
with the pre- and postadministration of an MDDMC item can be used to identify changes
in student conceptions following the program of instruction. For example, the plots may
reveal that a particular misconception is prevalent among students within a certain range of
logit-scale locations on the preassessment, and that this misconception decreases or persists
on the postassessment. Changes in student conceptions are evident when the probability
for selecting an answer choice among students at a particular achievement level varies
between the pre- and postassessments. Furthermore, the distractor analysis plots provide an
additional diagnostic tool that can be used to evaluate the degree to which answer choices
are functioning as intended. For example, in a well-functioning item, the trace line for the
correct answer choice should be monotonic with the latent variable—that is, the correct
answer choice should be most attractive to students with the highest achievement measures.

In this study, distractor analysis plots were examined for each item at both the pre- and
postassessment administrations. Results from the distractor analysis were considered in
terms of relevant literature related to student misconceptions in physical science and the
implications for curriculum and professional development within the context of DBIR.
To the extent that distractor analyses reveal changes in student conceptions or persistent
misconceptions even after students participate in activities intended to build understanding
of physical science concepts, they may inform refinements or supplements to curricula,
suggest potential topics for future teacher professional development, and guide research on
curriculum implementation.

RESULTS

This study used two major steps to explore student response patterns to physical science
MDDMC items over time. In this section, results from each step are summarized, followed
by a discussion of the results in terms of the research questions that were used to guide the
study.

Results for Step 1: Dichotomous Rasch Model

The first step in the data analysis involved the use of the dichotomous Rasch model to
estimate achievement measures and item difficulty calibrations on the logit-scale based
on student responses to the MDDMC items before and after a course of instruction.
Table 2 displays summary statistics from the dichotomous Rasch model for the preassess-
ment (Panel A) and the postassessment (Panel B). To provide a frame of reference for
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TABLE 2
Summary Statistics from the Dichotomous Rasch Model: Pre- and
Postassessments

Panel A: Preassessment Panel B: Postassessment

Statistics Student Item Student Item

Measure
M –0.49 0.00 0.40 0.00
SD 0.78 0.70 1.08 0.75
N 482 16 422 16

Standardized outfit
M 0.00 –0.10 0.10 0.00
SD 1.00 1.60 0.90 2.20

Standardized infit
M 0.00 –0.20 0.10 0.00
SD 0.90 1.60 0.80 2.20

Separation statistics
Reliability of

separation
0.44 0.98 0.64 0.97

Chi-square 715.0* 796.8* 918.3* 573.6*
Degrees of

freedom
481 15 421 15

*p < .05

interpreting student achievement measures, the item difficulty calibrations were centered at
zero (mean set to zero). On the preassessment, results indicated that the overall logit-scale
locations for students were lower than the logit-scale locations for the items (mean B =
–0.49, SD = 0.78; mean D = 0.00, SD = 0.70); this suggests that the items were generally
difficult for the students prior to instruction. On the postassessment, the opposite was true:
The overall logit-scale locations for students were higher on the logit scale (mean B = 0.40,
SD = 1.08; mean D = 0.00, SD = 0.75). Because the focus of this analysis is on changes
in response patterns to items, the significance of changes in student achievement and item
difficulty locations between the pre- and postassessments is not explored further here.

Table 2 also summarizes the results from model-data fit analyses for the pre- and postad-
ministrations of the physical science assessment. As can be seen in the table, acceptable
fit to the dichotomous Rasch model was observed at both time points, with mean stan-
dardized outfit and standardized infit MSE statistics near their expected value of 0.00
for items on the preassessment (mean standardized outfit MSE = –0.10, SD = 1.60;
mean standardized infit MSE = –0.20, SD = 1.60) and students (mean outfit MSE = 0.00,
SD = 1.00; mean infit MSE = 0.00, SD = 0.90). On the preassessment, results indicate high
reliability of separation statistic for items (Rel = 0.98), and a moderate reliability of sepa-
ration statistic for students (Rel = 0.40). Significant differences were observed among the
logit-scale locations for items (χ2 (15) = 685.1, p < .001) and students (χ2 (485) = 715.0,
p < .001). Panel B of Table 2 reports results from the Rasch analysis of student responses at
the postassessment. As can be seen in the table, values of standardized outfit and standard-
ized infit statistics indicate acceptable model-data fit for items (mean standardized outfit =
0.00, SD = 2.20; mean standardized infit = 0.00, SD = 2.20) and students (mean outfit =
0.10, SD = 0.90; mean infit = 0.10, SD = 0.80). Similar to the preassessment, significant
differences were observed among the logit-scale locations for items (χ2 (15) = 573.6,
p < .001) and students (χ2 (485) = 918.3, p < .001), with high reliability of separation
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Figure 2. Illustrative distractor analysis plot: Item 1.
Note that this item is adapted from item number FM054002 from the AAAS item bank. The correct answer choice
is C (marked with an asterisk). Detailed information about this item, including misconception references may be
accessed at http://assessment.aaas.org/items/FM054002#/0.

statistic for items (Rel = 0.97), and a moderate reliability of separation statistic for students
(Rel = 0.67).

Results for Step 2: Distractor Analysis

The Winsteps computer program (Linacre, 2014) was used to obtain the frequency
of students selecting each answer choice (A, B, C, or D) along the range of student
achievement estimates on the logit scale at each time point that were used to create pre- and
postassessment distractor analysis plots for each item. In this section, the distractor analysis
methodology is illustrated using four MDDMC items. The patterns observed among these
four illustrative items reflect the overall patterns that were observed among the MDDMC
items examined in this study. Then, the overall findings from the distractor analysis are
summarized.
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Figure 2 illustrates the distractor analysis procedure used in this study with the results for
Item 1 on the pre- and postassessments. Panel A displays the distractor analysis plots for the
pre- and postassessment responses to Item 1,1 and Panel B displays Item 1 as it appeared
in the assessments. The distractor analysis plots illustrate the relationship between student
achievement measures (B) on the x-axis and the proportion of students selecting an answer
choice (A, B, C, or D) on the y-axis. After Rasch estimates of student achievement on the
logit scale were obtained from the Winsteps computer program (Linacre, 2014), student
achievement estimates on the logit scale were rounded to the nearest integer value (–3 to
4). Then, the frequency of students selecting each answer choice was obtained for each
value. At each point on the scale, the proportion of students selecting each answer choice
was calculated by dividing the frequency of students who selected a given answer choice
by the total number of students observed at each point on the scale. The distractor analysis
plots were created by plotting the proportion of students selecting answer choices A, B, C,
and D (y-axis) across the range of student achievement measures at each time point (x-axis).
Accordingly, the y-axis values indicate the relative popularity of each answer choice for
students with different levels of achievement (x-axis).

For Item 1, examination of both the pre- and postassessment distractor plots reveals
that the correct answer choice (C) was most the most popular choice among students
with high achievement on both administrations. This result can be seen by examining the
proportion of students selecting answer choice C across the range of achievement mea-
sures. The plots for Item 1 indicate that answer choice C becomes increasingly frequent
as student achievement measures increase. This finding, that the proportion of students
selecting the correct answer choices increases as achievement levels increase, provides
evidence that the item is functioning as expected. Furthermore, examination of the pre-
and postassessment distractor plots reveals the proportion of students who were attracted
to the misconceptions associated with the incorrect answer choices for Item 1 (A, B,
and D), given estimates of achievement. Specifically, the distractor plot for the preassess-
ment suggests that the misconception associated with answer choice A was prominent
among students with low achievement measures. On the postassessment, the prominence
of answer choice A decreased among low-achieving students, and the proportion of students
selecting answer choices B and D increased among students with low measures.

As part of the curriculum’s unit on force, students have numerous opportunities to
learn about the various forces that may be acting on an object and to reason about forces
by drawing and interpreting free-body diagrams. It is therefore expected that, having
completed these exercises, higher achieving students would have found this item relatively
easy at posttest. At the same time, previous work on students’ use of free-body diagrams
suggests that, while effective for promoting conceptual understanding, the use of free-
body diagrams may be challenging for some students (Mattson, 2004; Van Heuvelen,
1991). For example, one study investigating students’ use and understanding of free-
body diagrams by undergraduate students in an algebra-based physics course found that
high-achieving students readily used free-body diagrams to help solve problems and to
evaluate their work, but lower achieving students tended to use free-body diagrams as a
problem-solving aid or not at all (Rosengrant, Van Heuvelen, & Etkina, 2009). Thus, the
apparent increase of misconceptions associated with answer choices B and D among lower
achieving students may reflect the difficulty of learning to use free-body diagrams during

1In examining the distractor analysis plots for the pre- and postassessment, it is important to recognize
the lack of equivalence in the interpretation of logit scale estimates of student achievement at each time
point (e.g., Linacre and Wright, 1989). The comparison between pre- and postassessments in this study
focuses on response patterns related to item distractors. No anchoring or other equating procedures were
used to transform achievement measures to a common scale between time points.
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Figure 3. Illustrative distractor analysis plot: Item 2.
Note that this item is adapted from item number FM011005 from the AAAS item bank. The correct answer choice
is A (marked with an asterisk). Detailed information about this item, including misconception references may be
accessed at http://assessment.aaas.org/items/FM011005#/0.

instruction or unsuccessful attempts to apply their experience with free-body diagrams when
answering Item 1.

A different pattern of changes between the pre- and postassessment response patterns
is illustrated in Figure 3, for Item 2 on the pre- and postassessments. The plots shown
in this figure are interpreted in the same manner as in Figure 2. As was seen for Item 1,
the correct answer choice (A) is most popular among students with high achievement
measures on both the pre- and postassessments. Furthermore, examination of Panel A
reveals that response patterns changed between the pre- and postassessments for Item 2.
On the preassessment, all three misconceptions (answer choices B, C, and D) displayed
distinct “peaks” at different locations along the logit scale. These peaks indicate the level
of achievement within which a particular answer choice was most attractive. The distractor
plot for the postassessment indicates that the prominence of misconceptions associated
with answer choices C and D decreased following instruction, whereas the misconception
associated with answer choice B increased among students with low achievement measures.
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Figure 4. Illustrative distractor analysis plot: Item 3.
Note that this item is adapted from item number FM074005 from the AAAS item bank. The correct answer choice
is B (marked with an asterisk). Detailed information about this item, including misconception references may be
accessed at http://assessment.aaas.org/items/FM074005#/0.

Another important but difficult concept within the unit is the relationship between force
and acceleration. Specifically, students engage in a variety of learning activities intended
to illustrate how changes in the balance of forces (e.g., an increase or decrease in friction)
results in a change in the object’s motion. The changing patterns in response to Item 2
suggest that while students at various levels of achievement held misconceptions about this
concept prior to curriculum enactment, these misconceptions may have been resolved for
many students, and particularly for students in the mid and upper ranges of achievement,
through their participation in curriculum activities.

A third type of change in response patterns between the pre- and postassessments is
illustrated in Figure 4 using Item 3. For this item, the correct answer choice (B) was
most popular among students with high achievement measures, and the misconception
associated with answer choice A was most prominent on both the pre- and postassessments.
Interestingly, the correct answer choice displayed a “peak” in popularity among students
with achievement measures between approximately –2 and –1 logits on the preassessment
that was not observed on the postassessment. This finding indicates that, for students with
relatively low achievement (achievement estimates between about –2 and –1 logits), the
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Figure 5. Illustrative distractor analysis plot: Item 4.
Note that this item is adapted from item number FM075004 from the AAAS item bank. The correct answer choice
is D (marked with an asterisk). Detailed information about this item, including misconception references may be
accessed at http://assessment.aaas.org/items/FM075004#/0.

correct answer choice was the most frequent selection. The relative ordering of the other two
misconceptions (answer choices C and D) remained relatively stable following instruction.
Similar to Item 1, students’ response patterns on Item 3 may reflect the difficulty many
students experience interpreting free-body diagrams, and specifically, using such diagrams
to determine net force. That students rarely chose answer choices C and D at either pre- or
posttest suggests that these options may not be well aligned to known misconceptions about
net force. Additionally, the length of the force arrows in the diagram and answer choices
for Item 3 may have been confusing for some students to compare visually to reason about
the magnitude of the net force.

Figure 5 illustrates a fourth pattern of changes in student misconceptions between the
pre- and postassessments using Item 4 from the physical science assessment. As was
observed in the other illustrative distractor analyses, the correct answer choice (D) is
monotonic with student achievement measures. On the preassessment, the misconceptions
associated with answer choices C and B were most prominent among students with low
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achievement measures. On the postassessment, the proportion of students with low measures
who selected answer choice A increased, and the proportion of students who selected answer
choice C decreased. One possibility that may account for changing response patterns on
this item is the relative frequency with which each of the scenarios depicted by the answer
options occurs within the curriculum. Specifically, students have multiple opportunities to
observe and reason about forces acting on an object in a manner similar to that illustrated
by options B, C, and D in comparison to the scenario depicted by option A, which is not
illustrated within the curriculum.

Overall Summary of Distractor Analysis Results

Overall, findings from the distractor analysis for the 16 MDDMC items examined in
this study suggested that the items displayed a variety of patterns of changes in student
misconceptions between the pre- and postassessments. All of the distractor analysis plots
for the pre- and postassessments indicated that the correct answer choice was monotonic
with the latent variable—that is, the proportion of students selecting the correct answer
choice increased as achievement measures increased. As suggested by the changes in the
overall item difficulty estimates between the pre- and postassessment, the correct answer
choice was more frequently observed on the postassessment.

It is important to note that the interpretation of patterns illustrated in the Rasch-based
distractor analysis plots depends on issues related to sample size, the frequency with which
each distractor is selected, and the rounding techniques used to produce the plots. The plots
shown here were produced by calculating the observed proportion of students selecting
each answer choice, given their estimated location on the logit scale rounded to the nearest
integer. In terms of sample size issues, the distractor analysis for each of the MDDMC items
examined in this study included examination of the frequencies of students who selected
each answer choice. Because the focus of this study is on discovering overall patterns of
misconceptions for diagnostic purposes, findings that small subsets of students selected a
given answer choice were not seen as problematic. As also noted in Herrmann-Abell and
DeBoer (2011, 2014), the overall patterns illustrated in the distractor analysis plots were
viewed as useful diagnostic information to guide targeted and differentiated instruction to
small groups of students.

SUMMARY AND DISCUSSION

This study employed a Rasch-based analysis of MDDMC items as a method to gather
diagnostic information about student understanding of physical science concepts, as well
as changes in student conceptions following a course of instruction. Student responses to
MDDMC items that were included in pre- and postadministrations of a physical science
assessments were explored in-depth using distractor analysis techniques that examined the
relationship between estimates of student achievement from the Rasch model and observed
patterns of responses that signaled misconceptions. In this section, findings are summarized
and discussed as they relate to the two guiding questions for this study.

Research Question 1: What Does a Rasch Analysis of MDDMC Items
Reveal About Student Understanding and Misconceptions of Physical
Science Concepts?

The first research question for this study asked: What does a Rasch analysis of MDDMC
items reveal about student understanding and misconceptions of physical science concepts?
To address this question, this study used the dichotomous Rasch model to explore the
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relationship between estimates of student achievement (B) and the probability for selecting
answer choices that reflect specific physical science misconceptions. Results from the
application of the Rasch model to data from the pre- and postadministrations of the physical
science assessment suggested adequate fit to the model.

In general, findings from the distractor analysis suggested that the MDDMC items ex-
amined in this study were functioning as expected at both the pre- and postassessment
administrations of the physical science assessment, with the correct answer choice being
the most probable response for high-achieving students. In addition, results from the dis-
tractor analysis suggested that students hold a variety of misconceptions about physical
science concepts and that the prominence of different misconceptions varies across the
range of the latent variable. The analyses illustrated in this study highlight the usefulness
of MDDMC items as diagnostic tools for identifying student misconceptions. Furthermore,
the combination of distractor analysis with a measurement framework based on invari-
ant measurement provides additional insight into the prevalence of these misconceptions
among students with varying levels of achievement. As pointed out by Wilson (2008), the
combination of a construct-driven measurement approach (i.e., Rasch measurement theory)
has two major benefits:

(a) it emphasizes how the misconceptions can be seen as positive manifestations of the
cognitive level of sophistication of the student rather than as mere ‘errors,’ and (b) it
makes available the strengths and possibilities of statistical modeling to the misconception
analysis. (p. 86)

Through the combination of a measurement model with invariance properties and dis-
tractor analysis techniques, the methods employed in this study can be seen as a diagnostic
method for examining student conceptions that provides additional insight about student
conceptions beyond their estimates of achievement. By providing a more nuanced account
of changing student conceptions over the course of curriculum implementation, such analy-
ses may be of particular interest to curriculum developers and educators working to develop
materials and instructional activities aimed at addressing persistent student misconceptions
in physical science. For example, distractor analyses indicating the persistence of a miscon-
ception intended to be addressed by the curriculum suggest a need to revisit and perhaps
revise how that particular concept is featured within the curriculum. Similarly, persistent
misconceptions may signal a need for additional professional development to address gaps
in teacher content knowledge or issues with curriculum implementation related to specific
concepts.

Research Question 2: How Can a Rasch Analysis of MDDMC Items Be
Used to Examine Changes in Student Misconceptions of Physical
Science Concepts Over Time?

The second research question for this study asked: How can a Rasch analysis of MDDMC
items be used to examine changes in student misconceptions of physical science concepts
over time? To address this question, distractor analysis techniques were used to examine
the functional relationship between estimates of student achievement and the prevalence
of misconceptions before and after a course of instruction. The results from pre- and
postassessment distractor analyses were considered side by side for each MDDMC item.
In general, findings from the pre–post comparisons suggested that the probability that
students selected a misconception rather than the correct answer choice decreased after
instruction.

Science Education, Vol. 99, No. 4, pp. 721–741 (2015)



738 WIND AND GALE

CONCLUSIONS AND IMPLICATIONS

This study extends previous research in several ways. First, it contributes to the litera-
ture on student misconceptions in physical science. Specifically, the study illustrates new
methods that science education researchers and practitioners could use to gain insight into
changes in students’ conceptual understanding of physical science phenomena between
pre- and postassessments. The graphical displays illustrated in this study provide a clear
method for visually examining patterns in student conceptions that may be more readily in-
terpreted by a range of audiences than previous tabular, graphical, and statistical summaries
of distractor analysis results that may rely on advanced smoothing techniques or nonlinear
measures of achievement. Combined with other indicators of student achievement at addi-
tional time points, the methods illustrated here may be able to provide insight about student
learning trajectories over the course of a program of instruction. Furthermore, this study
adds to previous distractor analysis research using Rasch measurement theory. Specifically,
the study extends the methodology proposed by Herrmann-Abell and DeBoer (2011, 2014)
by presenting a graphical distractor analysis method that can be used to explore changes
in student response patterns across multiple time points. When used with MDDMC items
at multiple time points in a program of instruction, this method provides diagnostic infor-
mation regarding the popularity of various misconceptions at different achievement levels
that can be used to inform instruction and professional development. When interpreting the
results from this study in terms of substantive conclusions about student conceptions, it is
important to note that the items used to illustrate the distractor analysis techniques may not
perfectly reflect relevant misconceptions for all three incorrect answer choices. Additional
research should explore patterns of student responses to MDDMC items using additional
items whose distractors are clearly aligned to known misconceptions.

Finally, this study illustrates Rasch modeling as a promising tool for DBIR. The results
of this study will inform refinements to the project-based science curriculum delivered
to participating students. For example, persistent misconceptions among lower achieving
students on certain items suggest a need to revisit curriculum materials to provide additional
scaffolding and support for key concepts that may be particularly difficult, such as using
free-body diagrams to reason about forces acting on an object. Thus, by applying the
Rasch model to identify patterns of student misconceptions and better visualize changes in
student conceptions following a course of instruction, the methods described in this study
can inform science curriculum development, teacher professional development, and can be
used to improve science teaching practices.

APPENDIX: PRE- AND POSTASSESSMENT CORRESPONDENCE

Pre–Post Analysis

This study used separate calibrations of item difficulty at the pre- and postassessment
time points. As pointed out by Embretson (1991), separate calibrations are desirable in that
they may avoid potential issues of multidimensionality due to the influence of modifiability
of item difficulties as a result of the differential effects of instruction on individual items.
To verify stability of the measures before and after instruction, the correspondence between
item difficulty measures was examined using a correlation analysis and a comparison of
item measures using the Wright and Stone (1979) separate calibration t-test (Smith, 1997).
When interpreting the results from a comparison between pre- and postassessments, it is
important to note that large sample sizes and multiple time points are required to gain
a complete sense of changes in item difficulty (e.g., differential item functioning). As a
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Figure A1. Correspondence between pre- and postassessment item calibrations.

result, this study did not focus on the magnitude of differences in item difficulty between
administrations. Rather, the focus is on changes in response patterns to assessment items
of interest related to a specific curriculum.

Results

A paired t-test for achievement measures (B) revealed that the overall difference be-
tween the pre- and postassessment means was highly significant (p < .001), indicating
that there was a positive shift in achievement measures following instruction. The inter-
pretation of this finding depends on the correspondence between the latent variable that
was measured by both assessments. Following Smith (1997), the correspondence between
pre- and postassessment item difficulties was examined to gauge the comparability of the
construct at both time points. The correlation between the pre- and postassessment item
calibrations is .85 (p < .001), and a bivariate plot of the item calibrations is given in Figure
A1. A comparison of mean item difficulty values between the pre- and postassessments
revealed that the overall difference between item difficulty estimates was highly significant
(p < .001, d = 1.10). The results of the t-test comparison (Wright & Stone, 1979) of the
individual pre- and postassessment item calibrations indicated that five of the item locations
changed significantly following instruction (t � |2|). This result is higher than would be
expected based on chance alone based on the 0.05 Type I error rate for these comparisons,
which would result in 0.80 item pairs with a t value greater than |2|.
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